How celestial navigation works – in easy steps: 1

You may well think celestial navigation is a dark science that calls for a lot of complex mathematics.  In a way that’s perfectly true because it took the work of many brilliant mathematicians to perfect the techniques mariners use to fix their position on the open sea.

But to practice the art of celestial navigation today you really don’t need much mathematical skill.  In fact you only have to be able to add and subtract – and maybe not even that now that we all have access to computers.

To explain the basic principles of celestial navigation let’s start with a crucial concept – the ‘geographical position’ of a heavenly body.

At any given moment every heavenly body is vertically above a precisely defined spot on the surface of the Earth.  So if you imagine a straight line drawn from the centre of the Earth to a star, someone standing where that line passes through the surface of the Earth would see that star directly overhead – or in their zenith.  That person will then be standing at the star’s geographical position (GP).  Its GP can be defined by its latitude (degrees north or south of the equator) and its longitude (degrees east or west of the Greenwich meridian, a line joining the North and South Geographical Poles that happens to pass through the observatory at Greenwich).

Now if the Earth did not rotate about its axis all the stars (though not the sun, moon or planets) would appear to stand still in the sky.  That would of course also mean that their GPs were fixed.  So a very simple way of navigating would be to identify the star whose GP was closest to your goal and then sail (or walk, or fly – or whatever) until that particular star was overhead.

You may say that won’t work because the Earth actually does turn.  But wait.  There are two special places on the Earth’s surface that actually do remain stationary in relation to the sky immediately above them: the North and South Geographical Poles.  So if you want to find your way to either Pole you only need to identify the star whose GP is closest to it and travel until it’s overhead.

We’re lucky that there is a prominent star whose GP currently lies very close to the North Pole – it’s called Polaris, or the Pole Star, or sometimes simply the North Star.  (Unfortunately there is no such star standing over the South Pole.)

If you watch the night sky in the northern hemisphere closely you’ll see that all the stars appear to revolve slowly around Polaris, which itself remains stationary.  Here’s a link that shows how to find Polaris:

As the height of Polaris increases the navigator knows that he or she is getting nearer to the North Pole.  And of course if its height is decreasing he or she must be travelling away from the North Pole.   So the very simplest form of celestial navigation is to measure the height of Polaris above the horizon.  This angle is what you measure with a sextant – in degrees and minutes of arc.  Obviously when the sextant tells you that Polaris is exactly overhead – a height of 90 degrees – you know you’ve arrived at the North Pole (latitude 90 degrees).  Equally if the height of Polaris is zero degrees – when it’s touching the horizon – you know you’re on the Equator (latitude 0 degrees).

The height of Polaris is in fact equivalent to the observer’s latitude.  If you measure the height of Polaris as, say, 45 degrees then you know are in the latitude 45 degrees North.  What could be simpler? (In fact Polaris is not quite vertically above the North Pole so a small correction is usually needed, but that need not concern us here.)

A sailor crossing the North Atlantic who knows the latitude of his or her destination can therefore make very good use of Polaris.  Suppose, for example, you want to enter the English Channel safely all you have to do is sail eastwards keeping Polaris at a height of roughly 49 degrees above the horizon.  That latitude brings you into the Channel roughly mid way between the Scilly Isles on the British side and Ushant on the French side.

This method has been used by mariners for centuries.  Of course it only works in the northern hemisphere as Polaris disappears below the horizon once the equator is crossed.  So another method of finding a ship’s latitude was needed when ships sailed in the southern hemisphere.  The answer was to measure the height of the sun at midday, but, as we shall see, that presented considerable difficulties.

Next instalment: latitude from the sun’s ‘meridian altitude’.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s